Optimizing the synthesis of SnO2/TiO2/RGO nanocomposites with excellent visible light photocatalytic and antibacterial activities†
Abstract
Multifunctional SnO2/TiO2/RGO nanocomposites with enhanced photocatalytic degradation and antibacterial activity have been successfully synthesized by a facile one-pot environmentally friendly green hydrothermal route using titanium tetrabutoxide (TBOT), Na2SnO3 and graphene oxide (GO) without reducing agents and any structure-directing agents. The results demonstrate that the reaction pH conditions play important roles in the control of the crystallographic phases of TiO2 and SnO2. In addition, the visible-light-active photocatalytic and antibacterial activities of the synthesized composites were measured for the degradation of rhodamine B (RhB) and the growth inhibition of the Gram-negative bacteria Escherichia coli (E. coli), which are strongly affected by the SnO2 loading content, the crystal structure of TiO2 and the appropriate addition of graphene. The superior photocatalytic and antibacterial activities of the nanocomposites were attributed to their great optical adsorption capability and excellent charge separation and transfer efficiency. This study may provide new insights into the fabrication of efficient visible-light-active SnO2/TiO2/RGO nanocomposites and expand their applications in the environmental remediation and water disinfection fields.