Issue 5, 2019

Stereoselective self-aggregation of synthetic zinc 31-epimeric bacteriochlorophyll-d analogs possessing a methylene group at the 132-position as models of green photosynthetic bacterial chlorosomes

Abstract

Zinc bacteriochlorophyll-d analogs possessing a methylene group at the 132-position were prepared by chemical modification of naturally occurring chlorophyll-a. The synthetic 31-epimers were successfully separated by reverse phase HPLC to give diastereomerically pure samples. The stereochemistry of the chiral C31-center in the separated bacteriochlorophyll-d analogs was determined by HPLC analysis of the authentic stereoisomers prepared stereospecifically. Both the epimers were monomeric in tetrahydrofuran to give sharp absorption bands, while they self-aggregated to form chlorosomal oligomers with red-shifted bands in an aqueous Triton X-100 micelle solution. The resulting large oligomers deaggregated by addition of Triton X-100 to give monomeric species. Their aggregation and deaggregation were dependent on the 31-stereochemistry, indicating that each epimer produced self-aggregates that were supramolecularly different. The substitution with the 132-methylene group enhanced their self-aggregation abilities and the stability of their resulting self-aggregates.

Graphical abstract: Stereoselective self-aggregation of synthetic zinc 31-epimeric bacteriochlorophyll-d analogs possessing a methylene group at the 132-position as models of green photosynthetic bacterial chlorosomes

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2018
Accepted
25 Feb 2019
First published
26 Feb 2019

Photochem. Photobiol. Sci., 2019,18, 1218-1227

Stereoselective self-aggregation of synthetic zinc 31-epimeric bacteriochlorophyll-d analogs possessing a methylene group at the 132-position as models of green photosynthetic bacterial chlorosomes

Y. Fujiwara and H. Tamiaki, Photochem. Photobiol. Sci., 2019, 18, 1218 DOI: 10.1039/C8PP00535D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements