Issue 17, 2019

Enzyme-catalysed biodegradation of carbon dots follows sequential oxidation in a time dependent manner

Abstract

Carbon dots (CDs) have recently garnered significant attention owing to their excellent luminescence properties, thereby demonstrating a variety of applications in in vitro and in vivo imaging. Understanding the long-term metabolic fate of these agents in a biological environment is the focus of this work. Here we show that the CDs undergo peroxide catalysed degradation in the presence of lipase. Our results indicate that differently charged CD species exhibit unique degradation kinetics upon being subjected to enzyme oxidation. Furthermore, this decomposition correlates with the relative accessibility of the enzymatic molecule. Using multiple physico-chemical characterization studies and molecular modelling, we confirmed the interaction of passivating surface abundant molecules with the enzyme. Finally, we have identified hydroxymethyl furfural as a metabolic by-product of the CDs used here. Our results indicate the possibility and a likely mechanism for complete CD degradation in living systems that can pave the way for a variety of biomedical applications.

Graphical abstract: Enzyme-catalysed biodegradation of carbon dots follows sequential oxidation in a time dependent manner

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2019
Accepted
20 Mar 2019
First published
22 Mar 2019

Nanoscale, 2019,11, 8226-8236

Enzyme-catalysed biodegradation of carbon dots follows sequential oxidation in a time dependent manner

I. Srivastava, D. Sar, P. Mukherjee, A. S. Schwartz-Duval, Z. Huang, C. Jaramillo, A. Civantos, I. Tripathi, J. P. Allain, R. Bhargava and D. Pan, Nanoscale, 2019, 11, 8226 DOI: 10.1039/C9NR00194H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements