Issue 11, 2019

Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging

Abstract

The development of new nanoplatforms with enhanced tumor accumulation for accurate diagnosis still remains a great challenge in current precision nanomedicine. Herein, we report the design of stem cell-mediated delivery of nanogels (NGs) loaded with ultrasmall iron oxide (Fe3O4) nanoparticles (NPs) for enhanced magnetic resonance (MR) imaging of tumors. In this study, sodium citrate-stabilized ultrasmall Fe3O4 NPs with a size of 3.16 ± 1.30 nm were first synthesized using a solvothermal route, coated with polyethyleneimine (PEI), and used as crosslinkers to crosslink alginate (AG) NGs formed via a double emulsion approach, where the AG carboxyl groups were pre-activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. The thus prepared Fe3O4 NP-loaded NGs (AG/PEI-Fe3O4 NGs) with a size of 47.68 ± 3.41 nm are water-dispersible, colloidally stable, cytocompatible in a given concentration range, display a relatively high r1 relaxivity (r1 = 1.5 mM−1 s−1), and are able to be taken up by bone mesenchymal stem cells without compromising cell viability and stem cell characteristics. Due to the tumor-chemotaxis or tumor tropism, the BMSCs are able to mediate the enhanced delivery of AG/PEI-Fe3O4 NGs to the tumor site after intravenous injection, thus enabling significantly strengthened MR imaging of tumors when compared to free NGs. These findings suggest that the developed AG/PEI-Fe3O4NGs, once mediated by stem cells may serve as a novel, safe, effective and targeted platform for enhanced MR imaging of tumors.

Graphical abstract: Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2018
Accepted
09 Feb 2019
First published
14 Feb 2019

Nanoscale, 2019,11, 4904-4910

Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging

X. Hao, B. Xu, H. Chen, X. Wang, J. Zhang, R. Guo, X. Shi and X. Cao, Nanoscale, 2019, 11, 4904 DOI: 10.1039/C8NR10490E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements