Jump to main content
Jump to site search

Issue 6, 2019
Previous Article Next Article

One-pot synthesis of sub-10 nm LiNbO3 nanocrystals exhibiting a tunable optical second harmonic response

Author affiliations

Abstract

Nanophotonics, dealing with the properties of light interacting with nanometer scale materials and structures, has emerged as a sought after platform for sensing and imaging applications, and is impacting fields that include advanced information technology, signal processing circuits, and cryptography. Lithium niobate (LiNbO3) is a unique photonic material, often referred to as the “silicon of photonics” due to its excellent optical properties. In this article, we introduce a solution-phase method to prepare single-crystalline LiNbO3 nanoparticles with average diameters of 7 nm. This one-pot approach forms well-dispersed LiNbO3 nanocrystals without additional organic additives (e.g., surfactants) to control growth and aggregation of the nanoparticles. Formation of these LiNbO3 nanocrystals proceeds through a non-aqueous sol–gel reaction, in which lithium hydroxide and niobium hydroxide species were generated in situ. The reaction proceeded through both a condensation and crystallization of these reactants to form the solid nanoparticles. These nanocrystals of LiNbO3 were active for optical second harmonic generation (SHG) with a tunable response from 400 to 500 nm. These nanoparticles could enable further development of non-linear optical techniques such as SHG microscopy for bioimaging, which requires the dimensions of nanoparticles to be well below 100 nm.

Graphical abstract: One-pot synthesis of sub-10 nm LiNbO3 nanocrystals exhibiting a tunable optical second harmonic response

Back to tab navigation

Supplementary files

Article information


Submitted
25 Aug 2018
Accepted
19 Apr 2019
First published
24 Apr 2019

This article is Open Access

Nanoscale Adv., 2019,1, 2268-2275
Article type
Paper

One-pot synthesis of sub-10 nm LiNbO3 nanocrystals exhibiting a tunable optical second harmonic response

R. F. Ali, M. Bilton and B. D. Gates, Nanoscale Adv., 2019, 1, 2268
DOI: 10.1039/C8NA00171E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements