Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Controlling the structure and magnetic properties of cluster-assembled metallic glasses

Author affiliations

Abstract

The potential to control the structure of amorphous materials and establish correlations with their properties would constitute an extraordinary step in formulating new pathways to design and tailor amorphous structures, which correspondingly would exhibit novel properties. Towards achieving this goal, a bottom-up approach is proposed here. In the present study, cluster-assembled Fe80Sc20 metallic glasses are used as the model systems to illustrate this potentially groundbreaking approach. Accordingly, Fe80Sc20 amorphous films are nanofabricated under well-defined conditions with precise control over cluster size and impact energy. Their local atomic structures are characterized by X-ray absorption spectroscopy around both constituent metals, i.e., Fe and Sc. The capability of controlling the local structure by controlling the deposition energy (i.e., the clusters’ impact energy) has resulted in substantial changes in the magnetic Curie temperature. In fact, the Curie temperature changes by as much as 60 K when the deposition energy is increased from 50 eV per cluster (the lowest deposition energy) to 500 eV per cluster (the highest deposition energy). This remarkable result, clearly establishing a structure–property relationship, observed for the first time in cluster-assembled metallic glasses, opens up new pathways for synthesizing novel amorphous materials with engineered structures and accompanying new properties.

Graphical abstract: Controlling the structure and magnetic properties of cluster-assembled metallic glasses

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Aug 2018, accepted on 18 Dec 2018 and first published on 09 Jan 2019


Article type: Communication
DOI: 10.1039/C8MH01013G
Citation: Mater. Horiz., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Controlling the structure and magnetic properties of cluster-assembled metallic glasses

    C. Benel, A. Fischer, A. Zimina, R. Steininger, R. Kruk, H. Hahn and A. Léon, Mater. Horiz., 2019, Advance Article , DOI: 10.1039/C8MH01013G

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements