Issue 2, 2019

Prospective treatment of Parkinson's disease by a siRNA–LDH nanoconjugate

Abstract

In the world, among the neurodegenerative diseases, Parkinson's is the second most common disease. Although several medications are available in the market, this disease still remains incurable and only the symptoms are controlled to a certain extent with severe side effects. For these reasons we decided to search for a novel therapeutic measure. The objective of this publication was to find a therapeutic procedure to cure this devastating disease. In this study, a biocompatible, easily permeable, cationic nanoparticle-layered double hydroxide was synthesized. Within the layers of these nanoparticles we intercalated α synuclein siRNA, which helps to silence the α synuclein gene. After the intercalation, which was optimized at a 1 : 40 ratio of siRNA : (LDH), we studied its stability in blood by a RNase protection test and serum protection assay. Both proved that LDH was an excellent nanocarrier that can protect intercalated molecules within its layers. After that, several cellular studies were performed by FACS to evaluate its biocompatibility after intercalation and cellular internalization. Results of the biocompatibility studies found it to be nontoxic and in the cellular internalization study, 51.55% of cells were taken into the nanoconjugate and confocal microscopy supported the data from FACS. Lastly, ELISA was performed to discover protein levels in the control, overexpressed, and treated groups of the SH-SY5Y cell line. These results verified that this nanoconjugate is a protective treatment procedure for Parkinson's disease.

Graphical abstract: Prospective treatment of Parkinson's disease by a siRNA–LDH nanoconjugate

Article information

Article type
Research Article
Submitted
04 Oct 2018
Accepted
08 Dec 2018
First published
10 Jan 2019

Med. Chem. Commun., 2019,10, 227-233

Prospective treatment of Parkinson's disease by a siRNA–LDH nanoconjugate

R. Acharya, M. Chakraborty and J. Chakraborty, Med. Chem. Commun., 2019, 10, 227 DOI: 10.1039/C8MD00501J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements