Issue 14, 2019

Ultra-compact, automated microdroplet radiosynthesizer


Application of microfluidics offers numerous advantages in the field of radiochemistry and could enable dramatic reductions in the cost of producing radiotracers for positron emission tomography (PET). Droplet-based microfluidics, in particular, requires only microgram quantities of expensive precursors and reagents (compared to milligram used in conventional radiochemistry systems), and occupies a more compact footprint (potentially eliminating the need for specialized shielding facilities, i.e. hot cells). However, the reported platforms for droplet radiosynthesis have several drawbacks, including high cost/complexity of microfluidic reactors, requirement for manual intervention (e.g. for adding reagents), or difficulty in precise control of droplet processes. We describe here a platform based on a particularly simple chip, where reactions take place atop a hydrophobic substrate patterned with a circular hydrophilic liquid trap. The overall supporting hardware (heater, rotating carousel of reagent dispensers, etc.) is very simple and the whole system could be packaged into a very compact format (about the size of a coffee cup). We demonstrate the consistent synthesis of [18F]fallypride with high yield, and show that protocols optimized using a high-throughput optimization platform we have developed can be readily translated to this device with no changes or re-optimization. We are currently exploring the use of this platform for routine production of a variety of 18F-labeled tracers for preclinical imaging and for production of tracers in clinically-relevant amounts by integrating the system with an upstream radionuclide concentrator.

Graphical abstract: Ultra-compact, automated microdroplet radiosynthesizer

Supplementary files

Article information

Article type
08 May 2019
29 May 2019
First published
30 May 2019

Lab Chip, 2019,19, 2415-2424

Ultra-compact, automated microdroplet radiosynthesizer

J. Wang, P. H. Chao and R. M. van Dam, Lab Chip, 2019, 19, 2415 DOI: 10.1039/C9LC00438F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity