Issue 6, 2019

High-sensitivity tracing of stable isotope labeled Ag nanoparticles in environmental samples using MC-ICP-MS

Abstract

Silver nanoparticles (Ag NPs) are among the most widely used engineered nanomaterials and this warrants further investigation of their behaviour and fate in the environment. To support such work, we developed new techniques for efficient tracing of Ag NPs that are produced from, and hence labelled with, enriched 109Ag (Ag-En). The methods encompass a one-step anion exchange separation of Ag from the sample matrix and precise determination of 109Ag/107Ag ratios and 109Ag abundances by multiple-collector ICP-MS. The sample preparation procedure has an Ag yield of 104 ± 13% (1 SD) and a procedural Ag blank of less than 7 pg, enabling analysis of samples with only trace Ag contents. Analyses of Ag solutions and realistic samples show that careful correction of memory effects is paramount for ensuring data quality. Using appropriate procedures, the 109Ag/107Ag ratios of samples containing Ag-En can be determined to a precision and trueness of better than about 0.5%, when more than 0.5 ng Ag are available for analysis. Even if Ag is only present at 50 pg or less, the Ag isotope ratios and Ag-En concentrations of samples can be measured to better than 5 to 10%. The methods are therefore able to resolve the presence of 1 pg of Ag-En in samples that contain as little as 10 pg and to up to 1 ng of natural Ag. As such, the techniques allow robust detection and quantification of Ag-En in environmental samples even when highly variable quantities of Ag-En and natural Ag are present. The new methodology thus enables the use of stable isotope tracing to investigate the fate of Ag NPs in complex environmental systems at dosing concentrations similar to the predicted environmental concentrations and for very small samples, whilst also providing high sample throughput.

Graphical abstract: High-sensitivity tracing of stable isotope labeled Ag nanoparticles in environmental samples using MC-ICP-MS

Supplementary files

Article information

Article type
Paper
Submitted
27 Oct 2018
Accepted
01 Apr 2019
First published
02 Apr 2019

J. Anal. At. Spectrom., 2019,34, 1173-1183

High-sensitivity tracing of stable isotope labeled Ag nanoparticles in environmental samples using MC-ICP-MS

T. Junk, M. Rehkämper and A. Laycock, J. Anal. At. Spectrom., 2019, 34, 1173 DOI: 10.1039/C8JA00358K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements