Volume 220, 2019

The effect of coordination of alkanes, Xe and CO21-OCO) on changes in spin state and reactivity in organometallic chemistry: a combined experimental and theoretical study of the photochemistry of CpMn(CO)3

Abstract

A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragment 3CpMn(CO)2 formed upon photolysis of CpMn(CO)3. Experimental data are provided for reactions in n-heptane and perfluoromethylcyclohexane (PFMCH), as well as in PFMCH doped with C2H6, Xe and CO2. In PFMCH we find that the conversion of 3CpMn(CO)2 to 1CpMn(CO)2(PFMCH) is much slower (τ = 18 (±3) ns) than the corresponding reactions in conventional alkanes (τ = 111 (±10) ps). We measure the effect of the coordination ability by doping PFMCH with alkane, Xe and CO2; these doped ligands form the corresponding singlet adducts with significantly variable formation rates. The reactivity as measured by the addition timescale follows the order 1CpMn(CO)2(C5H10) (τ = 270 (±10) ps) > 1CpMn(CO)2Xe (τ = 3.9 (±0.4) ns) ∼ 1CpMn(CO)2(CO2) (τ = 4.7 (±0.5) ns) > 1CpMn(CO)2(C7F14) (τ = 18 (±3) ns). Electronic structure theory calculations of the singlet and triplet potential energy surfaces and of their intersections, together with non-adiabatic statistical rate theory, reproduce the observed rates semi-quantitatively. It is shown that triplet adducts of the ligand and 3CpMn(CO)2 play a role in the kinetics, and account for the variable timescales observed experimentally.

Graphical abstract: The effect of coordination of alkanes, Xe and CO2 (η1-OCO) on changes in spin state and reactivity in organometallic chemistry: a combined experimental and theoretical study of the photochemistry of CpMn(CO)3

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2019
Accepted
04 Jul 2019
First published
14 Oct 2019

Faraday Discuss., 2019,220, 86-104

The effect of coordination of alkanes, Xe and CO21-OCO) on changes in spin state and reactivity in organometallic chemistry: a combined experimental and theoretical study of the photochemistry of CpMn(CO)3

X. Wu, Z. Liu, T. S. Murphy, X. Z. Sun, M. W. D. Hanson-Heine, M. Towrie, J. N. Harvey and M. W. George, Faraday Discuss., 2019, 220, 86 DOI: 10.1039/C9FD00067D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements