Issue 6, 2019

3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater

Abstract

The development of amidoxime-based polymeric (ABP) fibers offers a solution for uranium extraction from seawater (UES) and provides an alternative solution to the uranium resource shortage. However, ABP adsorbents prepared by existing methods cannot meet the requirements of high adsorption capacity, high selectivity, good mechanical strength and long service life. Herein, we fabricated a 3D hierarchical porous, high specific surface area ABP (H-ABP) fiber via self-assembly of axial grafting chains. A high adsorption capacity of 11.50 mg-U per g-adsorbents was achieved in natural seawater, which is a significant breakthrough in UES. Meanwhile, the adsorption capacity of uranium was higher than its major competing element vanadium, which overturned the U/V mass ratio of the ABP fiber. The H-ABP fiber also exhibited good mechanical strength and a long service life of at least 10 adsorption–desorption cycles. The well-designed structure resulted in groundbreaking properties, which completely meet the requirements for the economic evaluation of UES. This work presents a new technology for the synthesis of highly efficient adsorbents for UES, thus opening a whole new means of nuclear fuel production from the ocean.

Graphical abstract: 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2019
Accepted
25 Apr 2019
First published
25 Apr 2019

Energy Environ. Sci., 2019,12, 1979-1988

3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater

X. Xu, H. Zhang, J. Ao, L. Xu, X. Liu, X. Guo, J. Li, L. Zhang, Q. Li, X. Zhao, B. Ye, D. Wang, F. Shen and H. Ma, Energy Environ. Sci., 2019, 12, 1979 DOI: 10.1039/C9EE00626E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements