Jump to main content
Jump to site search

Issue 2, 2019
Previous Article Next Article

Extremely stable antimony–carbon composite anodes for potassium-ion batteries

Author affiliations

Abstract

Potassium-ion batteries (PIBs) have been considered as promising alternatives to lithium-ion batteries due to potassium's high natural abundance of 2.09 wt% (vs. 0.0017 wt% for Li) and K/K+ having a low redox potential of −2.93 V (vs. −2.71 V for Na/Na+). However, PIB electrodes still suffer huge challenges due to the large K-ion radius and slow reaction dynamics. Herein, we report a high-capacity Sb@CSN composite anode with Sb nanoparticles uniformly encapsulated by a carbon sphere network (CSN) for PIBs. First-principles computations and electrochemical characterization confirm a reversible sequential phase transformation of KSb2, KSb, K5Sb4, and K3Sb during the potassiation/depotassiation process. In a concentrated 4 M KTFSI/EC + DEC electrolyte, the Sb@CSN anode delivers a high reversible capacity of 551 mA h g−1 at 100 mA g−1 after 100 cycles with an extremely slow capacity decay of only 0.06% per cycle from the 10th to 100th cycle; when at a high current density of 200 mA g−1, the Sb@CSN anode still maintains a capacity of 504 mA h g−1 after 220 cycles. The Sb@CSN anodes demonstrate one of the best electrochemical performances for all K-ion battery anodes reported to date. The exceptional performance of Sb@CSN should be attributed to the efficient encapsulation of small Sb nanoparticles in the conductive carbon network as well as the formation of a robust KF-rich SEI layer on the Sb@CSN anode in the concentrated 4 M KTFSI/EC + DEC electrolyte.

Graphical abstract: Extremely stable antimony–carbon composite anodes for potassium-ion batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Sep 2018, accepted on 08 Jan 2019 and first published on 08 Jan 2019


Article type: Paper
DOI: 10.1039/C8EE02836B
Citation: Energy Environ. Sci., 2019,12, 615-623

  •   Request permissions

    Extremely stable antimony–carbon composite anodes for potassium-ion batteries

    J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji, H. Wang, S. Hou, M. R. Zachariah and C. Wang, Energy Environ. Sci., 2019, 12, 615
    DOI: 10.1039/C8EE02836B

Search articles by author

Spotlight

Advertisements