Issue 42, 2019

Organic–inorganic hybrid 1-D double chain heteropolymolybdates constructed from plenary Keggin germanomolybdate anions and hepta-nuclear Cu–RE–pic heterometallic clusters

Abstract

Two unprecedented organic–inorganic hybrid 1-D double chain germanomolybdates containing hepta-nuclear Cu–RE–pic heterometallic clusters [NH4]2[RE(H2O)5]2[Cu(pic)2]2[Cu(pic)2(H2O)2]3[α-GeMo12O40]2·22H2O [RE = La3+ (1), Ce3+ (2), and Hpic = 2-picolinic acid] were successfully obtained by the stepwise self-assembly strategy via the conventional solution method. The most striking structural feature of 1 and 2 is that the two plenary Keggin [α-GeMo12O40]4− polyoxoanions are joined by an organic–inorganic hybrid hepta-nuclear Cu–RE–pic {[RE(H2O)5]2[Cu(pic)2(H2O)2]3[Cu(pic)2]2}6+ heterometallic moiety. What is more interesting is that their adjacent structural units are connected together by {Cu(pic)2} bridges, forming a 1-D extended double chain architecture. Furthermore, the adsorption capacity of 1 toward dyes in aqueous solutions was deeply investigated. It is fascinating that 1 shows a good adsorption capacity toward basic violet 3 (BV 3) in aqueous solutions and the adsorption kinetics conforms to the second-order kinetic model.

Graphical abstract: Organic–inorganic hybrid 1-D double chain heteropolymolybdates constructed from plenary Keggin germanomolybdate anions and hepta-nuclear Cu–RE–pic heterometallic clusters

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2019
Accepted
21 Sep 2019
First published
24 Sep 2019

Dalton Trans., 2019,48, 15977-15988

Organic–inorganic hybrid 1-D double chain heteropolymolybdates constructed from plenary Keggin germanomolybdate anions and hepta-nuclear Cu–RE–pic heterometallic clusters

H. Hu, P. Gong, J. Pang, J. Jiang, L. Chen and J. Zhao, Dalton Trans., 2019, 48, 15977 DOI: 10.1039/C9DT03083B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements