Issue 24, 2019

The sulfonate group as a ligand: a fine balance between hydrogen bonding and metal ion coordination in uranyl ion complexes

Abstract

Nine uranyl ion complexes have been synthesized using two kinds of sulfonate-containing ligands, i.e. 2-, 3- and 4-sulfobenzoic acids (2-, 3- and 4-SBH2), which include additional carboxylic donors, and p-sulfonatocalix[4]arene (H8C4S), with additional phenolic groups, and [Ni(cyclam)]2+, [Cu(R,S-Me6cyclam)]2+ or PPh4+ as counterions. [Ni(cyclam)][UO2(4-SB)2(H2O)2]·2CH3CN (1) and [Ni(cyclam)][UO2(3-SB)2(H2O)2] (2) are molecular species in which only the carboxylate groups are coordinated to uranyl, the sulfonate groups being essentially hydrogen bond acceptors. In contrast, uranyl κ1-O(S);κ1-O(C)-chelation is found in the four complexes involving 2-SB2−, different bridging interactions producing diverse geometries. [UO2(2-SB)2Ni(cyclam)]·H2O (3) crystallizes as a two-dimensional (2D) assembly with fes topology, in which uranyl ion dimeric subunits are bridged by six-coordinate NiII cations. Complexes [UO2(2-SB)2Cu(R,S-Me6cyclam)]2·2H2O (4) and [(UO2)2(2-SB)2(C2O4)Cu(R,S-Me6cyclam)] (5), obtained together from the same solution, are a molecular tetranuclear complex and a 2D species with fes topology, respectively, depending on the coordination number, 5 or 6, of the CuII cation. The complex [PPh4]2[(UO2)2(2-SB)3(H2O)]·H2O (6) is a one-dimensional (1D), ribbon-like coordination polymer with a layered packing of alternate cationic and anionic sheets. No heterometallic complex was obtained with H8C4S, but the copper-only compound [{Cu(R,S-Me6cyclam)}5(H3C4S)2]·17H2O (7) displays mixed coordination/hydrogen bonding association of the copper azamacrocycle complex with the phenolic groups. The complexes [PPh4]5[UO2(H4C4S)(H2O)4][UO2(H3C4S)(H2O)4]·14H2O (8) and [PPh4]3[UO2(H3C4S)(H2O)3]·9H2O (9) were crystallized from the same solution and are a molecular complex and a 1D polymer, respectively, with monodentate sulfonate coordination to uranyl, while [PPh4]2[UO2(H4C4S)(H2O)3]·11H2O (10) is also a 1D polymer. The anionic complexes in the last three complexes form layers (9) or double layers (8 and 10) separated from one another by hydrophobic layers of PPh4+ cations. The balance between coordination and hydrogen bonding interactions with the macrocyclic ligands provides an indication of the energy of the sulfonate coordinate bond. Complex 6 is the only luminescent species in this series, albeit with a low quantum yield of 3%, and its emission spectrum is typical of a uranyl complex with five equatorial donors.

Graphical abstract: The sulfonate group as a ligand: a fine balance between hydrogen bonding and metal ion coordination in uranyl ion complexes

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2019
Accepted
10 Apr 2019
First published
11 Apr 2019

Dalton Trans., 2019,48, 8756-8772

The sulfonate group as a ligand: a fine balance between hydrogen bonding and metal ion coordination in uranyl ion complexes

P. Thuéry, Y. Atoini and J. Harrowfield, Dalton Trans., 2019, 48, 8756 DOI: 10.1039/C9DT01024F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements