Issue 17, 2019

Catalytic halogenation of methane: a dream reaction with practical scope?

Abstract

Development of catalysts that could surpass the activity and selectivity constraints of the non-catalytic radical-mediated halogenation of methane constitutes a long-standing challenge, which exhibits great potential to valorise this readily available resource for the production of commodities. This study presents comprehensive performance maps of a large library of materials, comprising carriers (quartz, SiO2, SiC, α-Al2O3, γ-Al2O3 and carbon), noble metals (Pt, Pd and Ru), metal oxides (Fe2O3 and CeO2), chlorides (PdCl2 and CuCl2) and oxyfluorides (TaOF3) supported on SiO2, γ-Al2O3, carbon or H-ZSM-5 carriers, sulfated systems (S-ZrO2, S-ZrO2-SBA-15, S-TiO2, S-Nb2O5, S-Ta2O5 and Nafion) and zeolites (3A, H-USY, H-MOR, H-SAPO-34, H-BETA and H-ZSM-5), in the chlorination and bromination of methane under practically relevant conditions and gains insights into the nature of the catalytic effects as a function of the catalyst and halogen of choice. The chlorination activity of different catalyst beds at low temperatures (473–523 K) was 2–5.5 times higher compared to that of the empty reactor of identical volume, while the bromination rate was almost unaffected by the solids in the whole temperature range (643–723 K). Except for zeolites and Pt/carbon, which promoted polyhalogenation, selectivities to halomethanes over most of the catalysts were similar to those in the non-catalytic reactions and were higher in bromination (SCH3Br = 80–95% versus SCH3Cl = 52–90% at XCH4 = 5–18%). The formation of carbon oxides (SCOx = 2–28%) over several materials in chlorination and virtually all systems in bromination implied the decomposition of halomethanes, which at higher temperatures led to coking, particularly in the latter reaction. The kinetic fingerprints along with the marginal impact of the Si : Al ratio, counter ions and extraframework aluminium species on the performance of the most active H-ZSM-5 catalyst indicated that methane chlorination over various materials is governed by the radical-chain mechanism, which limits the scope for breaking the selectivity–conversion relationships by tailoring the catalyst acidity. Nonetheless, the enhancement of chlorination activity over zeolites that followed a volcano-like dependence on their micropore size coupled with a more significant impact of the intracrystalline mesoporosity and crystallite size on the product distribution revealed the important role of confinement effects in this reaction, which may pave the way for advancements in the production of chloromethanes.

Graphical abstract: Catalytic halogenation of methane: a dream reaction with practical scope?

Article information

Article type
Paper
Submitted
02 Apr 2019
Accepted
31 May 2019
First published
31 May 2019
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2019,9, 4515-4530

Catalytic halogenation of methane: a dream reaction with practical scope?

V. Paunović and J. Pérez-Ramírez, Catal. Sci. Technol., 2019, 9, 4515 DOI: 10.1039/C9CY00625G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements