Band-like electron transport in 2D quantum dot periodic lattices: the effect of realistic size distributions
Abstract
Electron mobility in nanocrystal films has been a controversial topic in the last few years. Theoretical and experimental studies evidencing carrier transport by hopping or showing band-like features have been reported in the past. A relevant factor to analyze transport results is the progressive improvement in quantum dot superlattice fabrication, leading to better regimented structures for which band-like transport would be more relevant. This work presents an efficient model to compute temperature-dependent band-like electronic mobilities in 2D quantum dot arrays when a realistic quantum dot size distribution is considered. Comparisons with experimental results are used to estimate these size distributions, in good agreement with data of the samples.