Issue 27, 2019

Tunable electronic and optical properties of the WS2/IGZO heterostructure via an external electric field and strain: a theoretical study

Abstract

In this study, the structural, electronic and optical properties of a tungsten disulfide (WS2) hybrid with indium–gallium–zinc-oxide (IGZO) heterostructures were investigated based on density functional theory (DFT) calculations. According to the results of binding energy, charge density difference and electron localization function of heterostructures, we found that the WS2 and IGZO monolayers were bound to each other via non-covalent interactions with large binding energy. The calculated results illustrate that the AAii stacking pattern has an indirect band gap of 1.643 eV, while AAi and AB stacking patterns have maximum direct-gaps of 1.102 eV and 1.234 eV, respectively. Under an external E-field and mechanical strain, the response of the energy gap of the WS2/IGZO heterostructure monotonically decreased over a wide range, even with a semiconductor–metal transition. In addition, we investigated the optical properties of the heterostructure and found that it exhibits a much broad spectral responsivity (from visible light to deep UV light) and a more pronounced optical absorption than WS2 and IGZO monolayers. Moreover, the tensile strain could weaken the photoresponse of the heterostructure to the UV light and enhance the response for the visible light; under compressive strain, the heterostructure showed a strong absorption peak in the UV light. Meanwhile, a red-shift was observed under an external strain. All these unique and tunable properties indicate that the WS2/IGZO heterostructure is a good candidate for nanoelectronic and photoelectronic devices, such as field-effect transistors, flexible sensors, photodetectors and photonic devices.

Graphical abstract: Tunable electronic and optical properties of the WS2/IGZO heterostructure via an external electric field and strain: a theoretical study

Article information

Article type
Paper
Submitted
13 Apr 2019
Accepted
03 Jun 2019
First published
03 Jun 2019

Phys. Chem. Chem. Phys., 2019,21, 14713-14721

Tunable electronic and optical properties of the WS2/IGZO heterostructure via an external electric field and strain: a theoretical study

H. Tang, C. Tan, H. Yang, K. Zheng, Y. Li, H. Ye, X. Chen, X. Fan, T. Ren and G. Zhang, Phys. Chem. Chem. Phys., 2019, 21, 14713 DOI: 10.1039/C9CP02084E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements