Issue 14, 2019

Precise control of the interlayer spacing between graphene sheets by hydrated cations

Abstract

Recently, we have demonstrated that highly efficient ion rejection by graphene oxide membranes can be facilely achieved using hydrated cations to control the interlayer spacing in GO membranes. By using density functional theory calculations, we have shown that different hydrated cations can also precisely control the interlayer spacings between graphene sheets, which are smaller than graphene oxide sheets; this indicates ion sieving. The interlayer distances are 9.35, 8.96 and 8.82 Å for hydrated Li+, Na+ and K+, respectively. Since the radii of the hydrated Na+ and Li+ ions are larger than that of hydrated K+, graphene membranes controlled by the hydrated K+ ion can exclude K+ and the other two cations with larger hydrated volumes. Further analysis of charge transfer and orbit analysis showed that this type of control by the hydrated cations is attributed to the strong hydrated cation–π interactions; moreover, when soaked in a salt solution, graphene membranes adsorb hydrated Na+ and Li+ and form intercalation compounds. However, it is hard to find K-doped intercalation compounds in the inner part of graphene.

Graphical abstract: Precise control of the interlayer spacing between graphene sheets by hydrated cations

Supplementary files

Article information

Article type
Paper
Submitted
26 Dec 2018
Accepted
07 Mar 2019
First published
09 Mar 2019

Phys. Chem. Chem. Phys., 2019,21, 7623-7629

Precise control of the interlayer spacing between graphene sheets by hydrated cations

Y. Yang, L. Mu, L. Chen, G. Shi and H. Fang, Phys. Chem. Chem. Phys., 2019, 21, 7623 DOI: 10.1039/C8CP07837H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements