Jump to main content
Jump to site search

Issue 6, 2019
Previous Article Next Article

Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations

Author affiliations

Abstract

The surface tension of supercooled water is of fundamental importance in physical chemistry and materials and atmospheric sciences. Controversy, however, exists over its temperature dependence in the supercooled regime, especially on the existence of the “second inflection point (SIP)”. Here, we use molecular dynamics simulations of the SPC/E water model to study the surface tension of water (σw) as a function of temperature down to 198.15 K, and find a minimum point of surface excess entropy per unit area around ∼240–250 K. Additional simulations with the TIP4P/2005 water model also show consistent results. Hence, we predict an SIP of σw roughly in this region, at the boundary where the “no man's land” happens. The increase of surface entropy with decreasing temperature in the region below the inflection point is clearly an anomalous behavior, unknown for simple liquids. Furthermore, we find that σw has a near-linear correlation with the interfacial width, which can be well explained by the capillary wave theory. Deep in the supercooled regime, a compact water layer at the interface is detected in our simulations, which may be a key component that contributes to the deviation of surface tension from the International Association for the Properties of Water and Steam relationship. Our findings may advance the understanding of the origin of the anomalous properties of liquid water in the supercooled regime.

Graphical abstract: Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Sep 2018, accepted on 12 Jan 2019 and first published on 14 Jan 2019


Article type: Paper
DOI: 10.1039/C8CP05997G
Citation: Phys. Chem. Chem. Phys., 2019,21, 3360-3369

  •   Request permissions

    Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations

    X. Wang, K. Binder, C. Chen, T. Koop, U. Pöschl, H. Su and Y. Cheng, Phys. Chem. Chem. Phys., 2019, 21, 3360
    DOI: 10.1039/C8CP05997G

Search articles by author

Spotlight

Advertisements