Issue 11, 2019

Triazine-based molecular glasses frustrate the crystallization of barbiturates

Abstract

Hydrogen bonding is a key element of supramolecular chemistry and is often used in crystal engineering to direct crystal packing. In particular, systems where motifs with multiple hydrogen (H) bonds are present, such as the donor–acceptor–donor – acceptor–donor–acceptor (DAD–ADA) synthon, can be used to generate various supramolecular architectures. However, H-bonding can also be used to frustrate crystallization if it impedes an efficient molecular packing, instead resulting in glass formation. Herein, triazine-based molecular glass-formers, which can form multiple hydrogen bonds and show outstanding resistance to crystallization, are strategically used to hinder the crystallization of barbiturate derivatives, even in blends with low molar fractions, depending on the structure of the glass-former. Besides the strong DAD–ADA motifs, the molecules can form several sub-optimal motifs that can serve to hinder the crystallization of the barbiturate component during solvent evaporation or cooling. A triazine derivative with a covalently bound barbituric acid moiety was also synthesized, and did also not show any crystallization, showing that the presence of strong and predictable hydrogen bonding motifs does not necessarily contribute to crystallization. Our results highlight molecular design guidelines to hinder the crystallization of a compound, either by covalent functionalization or by blending with a glass-former capable of establishing similar interactions, thus leading to a variety of motifs for glass engineering.

Graphical abstract: Triazine-based molecular glasses frustrate the crystallization of barbiturates

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2019
Accepted
05 Feb 2019
First published
05 Feb 2019

CrystEngComm, 2019,21, 1734-1741

Triazine-based molecular glasses frustrate the crystallization of barbiturates

A. Laventure, D. Lauzon, C. Pellerin and O. Lebel, CrystEngComm, 2019, 21, 1734 DOI: 10.1039/C9CE00022D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements