Polydopamine nanoparticles carrying tumor cell lysate as a potential vaccine for colorectal cancer immunotherapy
Abstract
Polydopamine nanoparticles (PDA NPs) were prepared via dopamine self-polymerization; then, tumor cell lysate (TCL) was covalently attached onto the PDA NPs. The TCL loading capacity was 480 μg per mg of PDA NPs, and the resulting TCL@PDA NPs (241.9 nm) had perfect storage stability and negligible cytotoxicity against APCs. Tumor-bearing mice vaccinated with TCL@PDA NPs experienced significant delay in tumor progression due to the sufficient amount of CTLs and M1-type TAM as well as the deficient number of immunosuppression-related cells in the tumor tissues. Furthermore, empty PDA NPs had the ability to modulate DC maturation and delayed the development of tumors by facilitating the production of activated T cells and decreasing the subpopulation of MDSCs within the tumor microenvironment. Overall, these PDA NPs are expected to be a promising candidate for application as antigen delivery carriers because of their facile antigen loading method as well as their simple and rapid preparation process.

Please wait while we load your content...