Issue 35, 2019

Voltammetric behavior of mycotoxin zearalenone at a single walled carbon nanotube screen-printed electrode

Abstract

Zearalenone (ZEA) is a mycotoxin produced by a range of Fusarium fungi that infect cereals. ZEA may accumulate in cereals before the time of harvest. This paper describes the electrochemical behavior of zearalenone (ZEA) at a single-walled carbon nanotube screen-printed electrode (SWCNT-SPCE) using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). A single irreversible oxidation peak was observed. The DPV peak current of ZEA at a SWCNT-SPCE was noticeably enhanced due to ZEA adsorption on the electrode surface. Interestingly, the electrode showed no surface fouling by the oxidation products of ZEA and the repeated use of the electrode is feasible. The electrodeposited film was examined in an Fe(CN)63−/4− redox probe using CV and EIS measurements. A differential pulse adsorptive stripping voltammetric (DPASV) method for the determination of ZEA was developed. Under the optimized conditions, the anodic peak current of ZEA varies linearly with the ZEA concentration in the range 2.5 × 10−8 − 1.0 × 10−6 M with a detection limit (LOD) of 5.0 × 10−9 M. The method was applied for the quantitative analysis of ZEA in cornflake samples.

Graphical abstract: Voltammetric behavior of mycotoxin zearalenone at a single walled carbon nanotube screen-printed electrode

Article information

Article type
Paper
Submitted
03 Jul 2019
Accepted
02 Aug 2019
First published
05 Aug 2019

Anal. Methods, 2019,11, 4494-4500

Voltammetric behavior of mycotoxin zearalenone at a single walled carbon nanotube screen-printed electrode

A. Radi, A. Eissa and T. Wahdan, Anal. Methods, 2019, 11, 4494 DOI: 10.1039/C9AY01400D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements