Hybridization chain reaction-enhanced enzyme biomineralization for ultrasensitive colorimetric biosensing of a protein biomarker†
Abstract
By employment of an aptamer-initiated hybridization chain reaction (HCR) to enhance the enzyme biomineralization of cupric subcarbonate, this work develops a novel colorimetric biosensing method for protein analysis. The HCR product was used to specifically attach a large amount of urease-functionalized gold nanoparticles (Au NPs) for the preparation of a gold nanoprobe. After the sandwich biorecognition reactions, this nanoprobe could be quantitatively captured onto the antibody-functionalized magnetic bead (MB) platform. Then, numerous copper ions would be enriched onto the MB surface through the urease-induced biomineralization of cupric subcarbonate. Based on the complete release of Cu2+ ions for the sensitive copper chromogenic reaction, convenient colorimetric signal transduction was thus achieved for the quantitative analysis of the target analyte of the carcinoembryonic antigen. The HCR product provides a large number of biotin sites for the attachment of Au NP nanotags. The biomineralization reaction of high-content urease loaded onto Au NPs leads to highly efficient Cu2+ enrichment for signal amplification. So this method features excellent performance including a very wide linear range and a low detection limit down to 0.071 pg mL−1. In addition, the satisfactory results of real sample experiments reveal that this method possesses huge potential for practical applications.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        