Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 47, 2018
Previous Article Next Article

Lanthanide luminescence as a local probe in mixed anionic hydrides – a case study on Eu2+-doped RbMgHxF3−x and KMgHxF3−x

Author affiliations

Abstract

In the search for novel mixed anionic hydrides, simple and sensitive detection methods can be useful and local probes lead to a better understanding of the materials. In our present study, we show that 5d–4f lanthanide luminescence can serve as a local sensor to verify the presence of hydride and potentially estimate the hydride content. As a model system, the Eu2+-doped hydride fluoride solid solution series of MMgDxF3−x (MMgHxF3−x) with M = K, Rb is used, which were prepared and characterized by a combined X-ray and neutron diffraction approach. At room temperature, the compounds with M = Rb crystallize in a hexagonal perovskite-type structure and those with M = K crystallize in a normal cubic perovskite structure. Their lattice parameters follow Vegard's law. We also reinvestigated the structure and anion distribution in KMgD2F. Bright yellow emission in RbMgH3:Eu2+ is observed for the first time and for both M, the hydride fluoride compounds show Eu2+ emission energies between those of the pure hydrides and fluorides, which can be used for calibration and fast idendification of the hydride content, especially in the region of low hydride content.

Graphical abstract: Lanthanide luminescence as a local probe in mixed anionic hydrides – a case study on Eu2+-doped RbMgHxF3−x and KMgHxF3−x

Back to tab navigation

Supplementary files

Article information


Submitted
03 Aug 2018
Accepted
08 Nov 2018
First published
09 Nov 2018

J. Mater. Chem. C, 2018,6, 13006-13012
Article type
Paper

Lanthanide luminescence as a local probe in mixed anionic hydrides – a case study on Eu2+-doped RbMgHxF3−x and KMgHxF3−x

T. Wylezich, S. Welinski, M. Hoelzel, P. Goldner and N. Kunkel, J. Mater. Chem. C, 2018, 6, 13006
DOI: 10.1039/C8TC03881C

Social activity

Search articles by author

Spotlight

Advertisements