Issue 15, 2018

Synthesis of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(methyl methacrylate) with low dielectric loss by photo-induced metal-free ATRP

Abstract

The grafting of poly(methacrylate ester) or polystyrene onto the side chain of poly(vinylidene fluoride) (PVDF)-based fluoropolymers maintains their high energy density and remarkably reduces the energy loss due to the confinement (or insulation) effect, which has potential application in high-pulse capacitors. The graft copolymers were previously synthesized from C–Cl bonds via the transition metal-catalyzed atom transfer radical polymerization (ATRP) process. To overcome the negative influence of the residual metal ions from the catalyst on the dielectric properties of the resultant copolymers, in the present contribution, a facile strategy is reported for photo-mediated ATRP using organic-based photoredox catalysts to directly synthesize a poly(methyl methacrylate) (PMMA)-grafted copolymer from the commercial poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF–CTFE)). The graft copolymerization is efficiently activated and deactivated with light and exhibits first-order kinetics. The detailed structural information of the graft copolymer, including average grafting density and side chain length, are also determined by converting the uninitiated Cl atoms into H atoms. When compared with the traditional Cu-catalyzed ATRP process, the current photo-induced ATRP method used for preparing the graft copolymer results in improved dielectric performances such as reduced dielectric loss at low frequency and high temperature, decreased conduction loss, and enhanced breakdown strength.

Graphical abstract: Synthesis of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(methyl methacrylate) with low dielectric loss by photo-induced metal-free ATRP

Supplementary files

Article information

Article type
Paper
Submitted
12 Feb 2018
Accepted
14 Mar 2018
First published
14 Mar 2018

J. Mater. Chem. C, 2018,6, 4131-4139

Synthesis of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(methyl methacrylate) with low dielectric loss by photo-induced metal-free ATRP

S. Tan, J. Xiong, Y. Zhao, J. Liu and Z. Zhang, J. Mater. Chem. C, 2018, 6, 4131 DOI: 10.1039/C8TC00781K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements