Facile synthesis of graphene nanoribbons from zeolite-templated ultra-small carbon nanotubes for lithium ion storage†
Abstract
One-dimensional graphene nanoribbons are attracting considerable attention due to their extraordinary electronic, magnetic, and optical properties, and have a wide range of applications, but have not attained full success owing to the lack of simple and efficient synthetic strategies. Here, we present a facile strategy for the synthesis of graphene nanoribbons by unraveling ultra-small carbon nanotubes. The armchair (2,2) carbon nanotubes with a theoretical diameter of 0.28 nm fabricated in the nanochannels of zeolite ZnAPO4-11 (AEL) can be transformed into graphene nanoribbons by removing the AEL template through chemical treatment. The as-synthesized graphene nanoribbons are N-doped with a thickness of two- to seven-layers, have a width of 10–30 nm and length of >1 μm, and show high performance as an anode material for lithium ion batteries. Moreover, this strategy can be readily scaled up for practical applications requiring bulk quantities of graphene nanoribbons.

Please wait while we load your content...