Issue 40, 2018

Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency

Abstract

Semi-transparent perovskite solar cells (Pero-SCs) are realized by tuning the band gap of the perovskite to resolve the trade-off between the transparency and efficiency of the photo-absorber. We synthesized wide-bandgap MAPbI3−xBrx perovskite, and the transparency and efficiency of the corresponding semi-transparent Pero-SCs were investigated systematically by varying the I : Br ratio and thickness of the perovskite film. Increasing Br content widened the bandgap of perovskite (i.e., blue shift of the absorption edge), and led to an increase in the average visible transmittance (AVT). This strategy allowed for high AVTs, and concomitantly achieved high power conversion efficiencies. Meanwhile, increasing the Br content could facilitate formation of perovskite films with large grains that were highly crystallized. Compared with the narrow-bandgap perovskite, the wide-bandgap perovskite showed advantages for obtaining semi-transparent Pero-SCs with thick perovskite films (>200 nm) and high (20%) transparency.

Graphical abstract: Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2018
Accepted
17 Sep 2018
First published
18 Sep 2018

J. Mater. Chem. A, 2018,6, 19696-19702

Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency

L. Yuan, Z. Wang, R. Duan, P. Huang, K. Zhang, Q. Chen, N. K. Allam, Y. Zhou, B. Song and Y. Li, J. Mater. Chem. A, 2018, 6, 19696 DOI: 10.1039/C8TA07318J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements