MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3†
Abstract
The synthesis of NH3 heavily depends on the energy-intensive Haber–Bosch process with a large amount of greenhouse gas emission. Electrochemical reduction offers a carbon-neutral process to convert N2 to NH3 at ambient conditions, but requires efficient and stable catalysts for the N2 reduction reaction. Mo-dependent nitrogenases and synthetic molecular complexes have attracted increasing attention for N2 fixation; however, less attention has been paid to Mo-based nanocatalysts for electrochemical N2 conversion to NH3. Herein, we report that MoO3 nanosheets act as an efficient non-noble-metal catalyst for electrochemical N2 fixation to NH3 with excellent selectivity at room temperature and atmospheric pressure. In 0.1 M HCl, this catalyst exhibits remarkable NRR activity with an NH3 yield of 4.80 × 10−10 mol s−1 cm−2 (29.43 μg h−1 mgcat.−1) and a faradaic efficiency of 1.9%. Moreover, this catalyst also shows high electrochemical stability and durability. Density functional theory calculations reveal that the outermost Mo atoms serve as the active sites for effective N2 adsorption.

Please wait while we load your content...