Issue 14, 2018

Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency

Abstract

Cesium metal halides are potential light-harvesting materials for use in the top cells of multi-junction devices due to their suitable bandgaps and good thermal stabilities. In particular, CsPbI3 has a bandgap of 1.7 eV, which is suitable for perovskite/Si tandem cells. However, the desirable black phase for CsPbI3 is not stable because Cs is too small to support the PbI6 octahedra. Also, there is room for improvement in terms of cell performance. Herein, we partially replace Pb2+ with Ca2+ in the CsPbI3 precursor, producing multiple benefits. Firstly, more uniform films with larger grains are produced from CsPbI3 with Ca2+, due to the reduction in the size of the colloids in the precursor solution with Ca2+. This morphology improvement provides better contact at the interface between the perovskite and the hole transport layer. In addition, it is found that the surface of the film is modified by the formation of a Ca rich oxide layer, providing a surface passivation effect. Finally, incorporation of Ca increases the band gap, leading to an increase in output voltage. The best CsPbI3 solar cell using 5% Ca2+ substitution in the precursor achieves a stabilised efficiency of 13.3%, and maintains 85% of its initial efficiency for over 2 months with encapsulation.

Graphical abstract: Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency

Supplementary files

Article information

Article type
Communication
Submitted
21 Dec 2017
Accepted
26 Feb 2018
First published
26 Feb 2018

J. Mater. Chem. A, 2018,6, 5580-5586

Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency

C. F. J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, J. Bing, B. Wilkinson, L. Hu, R. Patterson, S. Huang and A. Ho-Baillie, J. Mater. Chem. A, 2018, 6, 5580 DOI: 10.1039/C7TA11154A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements