Jump to main content
Jump to site search


Electrostatic interaction of particles trapped at fluid interfaces: Effects of geometry and wetting properties

Abstract

The electrostatic interaction between pairs of spherical or macroscopically long, parallel cylindrical colloids trapped at fluid interfaces is studied theoretically for the case of small inter-particle separations. Starting from the effective interaction between two planar walls and by using the Derjaguin approximation, we address the issue of how the electrostatic interaction between such particles is influenced by their curvatures and by the wetting contact angle at their surfaces. Regarding the influence of curvature, our findings suggest that the discrepancies between linear and nonlinear Poisson-Boltzmann theory, which have been noticed before for planar walls, also occur for spheres and macroscopically long, parallel cylinders, though their magnitude depends on the wetting contact angle. Concerning the influence of the wetting contact angle θ simple relations are obtained for equally sized particles which indicate that the inter-particle force varies significantly with θ only within an interval around 90°. This interval depends on the Debye length of the fluids and on the size of the particles but not on their shape. For unequally sized particles, a more complicated relation is obtained for the variation of the inter-particle force with the wetting contact angle.

Back to tab navigation

Publication details

The article was received on 28 Aug 2018, accepted on 06 Nov 2018 and first published on 08 Nov 2018


Article type: Paper
DOI: 10.1039/C8SM01765D
Citation: Soft Matter, 2018, Accepted Manuscript
  • Open access: Creative Commons BY license
  •   Request permissions

    Electrostatic interaction of particles trapped at fluid interfaces: Effects of geometry and wetting properties

    A. Majee, M. Bier and S. Dietrich, Soft Matter, 2018, Accepted Manuscript , DOI: 10.1039/C8SM01765D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements