Jump to main content
Jump to site search

Issue 42, 2018
Previous Article Next Article

Overcurvature induced multistability of linked conical frusta: how a ‘bendy straw’ holds its shape

Author affiliations

Abstract

We study the origins of multiple mechanically stable states exhibited by an elastic shell comprising multiple conical frusta, a geometry common to reconfigurable corrugated structures such as ‘bendy straws’. This multistability is characterized by mechanical stability of axially extended and collapsed states, as well as a partially inverted ‘bent’ state that exhibits stability in any azimuthal direction. To understand the origin of this behavior, we study how geometry and internal stress affect the stability of linked conical frusta. We find that tuning geometrical parameters such as the frustum heights and cone angles can provide axial bistability, whereas stability in the bent state requires a sufficient amount of internal pre-stress, resulting from a mismatch between the natural and geometric curvatures of the shell. We provide insight into the latter effect through curvature analysis during deformation using X-ray computed tomography (CT), and with a simple mechanical model that captures the qualitative behavior of these highly reconfigurable systems.

Graphical abstract: Overcurvature induced multistability of linked conical frusta: how a ‘bendy straw’ holds its shape

Back to tab navigation

Supplementary files

Article information


Submitted
03 Jul 2018
Accepted
08 Oct 2018
First published
18 Oct 2018

Soft Matter, 2018,14, 8636-8642
Article type
Paper
Author version available

Overcurvature induced multistability of linked conical frusta: how a ‘bendy straw’ holds its shape

N. P. Bende, T. Yu, N. A. Corbin, M. A. Dias, C. D. Santangelo, J. A. Hanna and R. C. Hayward, Soft Matter, 2018, 14, 8636
DOI: 10.1039/C8SM01355A

Social activity

Search articles by author

Spotlight

Advertisements