Issue 41, 2018

Synthetic hydrogels formed by thiol–ene crosslinking of vinyl sulfone-functional poly(methyl vinyl ether-alt-maleic acid) with α,ω-dithio-polyethyleneglycol

Abstract

Polymer hydrogels formed by rapid thiol–ene coupling of macromolecular gel formers can offer access to versatile new matrices. This paper describes the efficient synthesis of cysteamine vinyl sulfone (CVS) trifluoroacetate, and its incorporation into poly(methyl vinyl ether-alt-maleic anhydride) (PMMAn) to form a series of CVS-functionalized poly(methyl vinyl ether-alt-maleic acid) polymers (PMM-CVSx) containing 10 to 30 mol% pendant vinyl sulfone groups. Aqueous mixtures of these PMM-CVS and a dithiol crosslinker, α,ω-dithio-polyethyleneglycol (HS-PEG-SH, Mn = 1 kDa), gelled through crosslinking by Michael addition within seconds to minutes, depending on pH, degree of functionalization, and polymer loading. Gelation efficiency, Young's modulus, equilibrium swelling and hydrolytic stability are described, and step-wise hydrogel post-functionalization with a small molecule thiol, cysteamine, was demonstrated. Cytocompatibility of these crosslinked hydrogels towards entrapped 3T3 fibroblasts was confirmed using a live/dead fluorescence assay.

Graphical abstract: Synthetic hydrogels formed by thiol–ene crosslinking of vinyl sulfone-functional poly(methyl vinyl ether-alt-maleic acid) with α,ω-dithio-polyethyleneglycol

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2018
Accepted
31 Aug 2018
First published
05 Oct 2018

Soft Matter, 2018,14, 8317-8324

Synthetic hydrogels formed by thiol–ene crosslinking of vinyl sulfone-functional poly(methyl vinyl ether-alt-maleic acid) with α,ω-dithio-polyethyleneglycol

S. A. Stewart, M. B. Coulson, C. Zhou, N. A. D. Burke and H. D. H. Stöver, Soft Matter, 2018, 14, 8317 DOI: 10.1039/C8SM01066H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements