Issue 24, 2018

Simulation of the optimal diameter and wall thickness of hollow Fe3O4 microspheres in magnetorheological fluids

Abstract

This work reported a simulation study on the optimal diameter (D) and wall thickness (H) of hollow Fe3O4 microspheres to improve the magnetorheological (MR) effect. Modified formulae for the magnetic dipolar force, van der Waals force, and hydrodynamic drag force were employed in the simulation model. Typical evolution of shear stress and microstructures in steady shear flow was obtained. The shear stress–strain curve was divided into linear, fluctuant, and homeostasis regions, which were related to the inclination of particle chains and the lateral aggregation. For hollow Fe3O4 microspheres with different diameters and wall thicknesses, the shear stress curves collapsed onto a quadratic master curve. The best wall thickness was H = 0.39D for a 20 wt% MR fluid and H = 0.35D for a 40 wt% MR fluid, while the optimal diameter was D = 1000 nm and D = 100 nm, respectively. The maximum shear stress of the 40 wt% MR fluid was twice that of the 20 wt% MR fluid. The change of shear stress was due to the competition that results among the magnetic interaction, number of neighbors, tightness, and orientation of the particle chains. Simulated dimensionless viscosity data as a function of Mason number for various diameters, wall thicknesses, and weight fractions collapsed onto a single master curve. The simulated shear stress under both a magnetic field and shear rate sweep matched well with experiments.

Graphical abstract: Simulation of the optimal diameter and wall thickness of hollow Fe3O4 microspheres in magnetorheological fluids

Supplementary files

Article information

Article type
Paper
Submitted
05 Apr 2018
Accepted
25 May 2018
First published
26 May 2018

Soft Matter, 2018,14, 5080-5091

Simulation of the optimal diameter and wall thickness of hollow Fe3O4 microspheres in magnetorheological fluids

L. Pei, H. Pang, K. Chen, S. Xuan and X. Gong, Soft Matter, 2018, 14, 5080 DOI: 10.1039/C8SM00704G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements