Jump to main content
Jump to site search

Issue 24, 2018
Previous Article Next Article

Nematic colloidal knots in topological environments

Author affiliations

Abstract

The role of environment in shaping material properties is of great significance, but less is known about how non-trivial topology of the environment couples to material states, which can be of non-trivial topology themselves. In this paper, we demonstrate the role of the topology of the environment on the formation of complex nematic fields and defect structures, specifically in the system of nematic colloidal knots. The topological environments around knotted colloidal particles are suggested to exist as spherical surface-patterned nematic cavities imposing radial, uniform or hyperbolic nematic profiles. We show that topologically different nematic environments significantly affect and create differences in the colloidal field structure created within the environment, such as the location, profile and number of topological defects. Specifically, we demonstrate that topological environments in combination with knotted colloidal particles of non-trivial topology lead to the formation of diverse nematic knotted and linked fields. These fields are different adaptations of the knotted shape of the colloidal particles, creating knots and links of topological defects as well as escaped-core defect-like solitonic structures. These are observed in chiral nematic media but here are stabilised in achiral nematic media as a result of the distinct shape of the knotted colloidal particle, with a double helix segment and nematic environmental patterns. More generally, this paper is a contribution towards understanding the role of environment, especially its topology, on the response and defect formation in elastic fields, such as in nematic liquid crystal colloids.

Graphical abstract: Nematic colloidal knots in topological environments

Back to tab navigation

Publication details

The article was received on 16 Mar 2018, accepted on 21 Apr 2018 and first published on 23 Apr 2018


Article type: Paper
DOI: 10.1039/C8SM00539G
Citation: Soft Matter, 2018,14, 4935-4945
  • Open access: Creative Commons BY license
  •   Request permissions

    Nematic colloidal knots in topological environments

    S. M. Hashemi and M. Ravnik, Soft Matter, 2018, 14, 4935
    DOI: 10.1039/C8SM00539G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements