Issue 26, 2018

Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles

Abstract

Coiled-coil peptides have proven useful in a range of materials applications ranging from the formation of well-defined fibrils to responsive hydrogels. The ability to design from first principles their oligomerization and subsequent higher order assembly offers their expanded use in producing new materials. Toward these ends, homo-tetrameric, antiparallel, coiled-coil, peptide bundles have been designed computationally, synthesized via solid-phase methods, and their solution behavior characterized. Two different bundle-forming peptides were designed and examined. Within the targeted coiled coil structure, both bundles contained the same hydrophobic core residues. However, different exterior residues on the two different designs yielded sequences with different distributions of charged residues and two different expected isoelectric points of pI 4.4 and pI 10.5. Both coiled-coil bundles were extremely stable with respect to temperature (Tm > 80 C) and remained soluble in solution even at high (millimolar) peptide concentrations. The coiled-coil tetramer was confirmed to be the dominant species in solution by analytical sedimentation studies and by small-angle neutron scattering, where the scattering form factor is well represented by a cylinder model with the dimensions of the targeted coiled coil. At high concentrations (5–15 mM), evidence of interbundle structure was observed via neutron scattering. At these concentrations, the synthetic bundles form soluble aggregates, and interbundle distances can be determined via a structure factor fit to scattering data. The data support the successful design of robust coiled-coil bundles. Despite their different sequences, each sequence forms loosely associated but soluble aggregates of the bundles, suggesting similar dissociated states for each. The behavior of the dispersed bundles is similar to that observed for natural proteins.

Graphical abstract: Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2018
Accepted
11 Jun 2018
First published
15 Jun 2018

Soft Matter, 2018,14, 5488-5496

Author version available

Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles

M. J. Haider, H. V. Zhang, N. Sinha, J. A. Fagan, K. L. Kiick, J. G. Saven and D. J. Pochan, Soft Matter, 2018, 14, 5488 DOI: 10.1039/C8SM00435H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements