Issue 19, 2018

Langevin equations for the run-and-tumble of swimming bacteria

Abstract

The run and tumble motions of a swimming bacterium are well characterized by two stochastic variables: the speed v(t) and the change of direction or deflection x(t) = cos φ(t), where φ(t) is the turning angle at time t. Recently, we have introduced [G. Fier, D. Hansmann and R. C. Buceta, A stochastic model for directional changes of swimming bacteria, Soft Matter, 2017, 13, 3385–3394.] a single stochastic model for the deflection x(t) of an E. coli bacterium performing both types of movement in isotropic media without taxis, based on available experimental data. In this work we introduce Langevin equations for the variables (v, x), which for particular values of a control parameter β correspond to run and tumble motions, respectively. These Langevin equations have analytical solutions, which make it possible to calculate the statistical properties of both movements in detail. Assuming that the stochastic processes x and v are not independent during the tumble, we show that there are small displacements of the center of mass along the normal direction to the axis of the bacterial body, a consequence of the flagellar unbundling during the run-to-tumble transition. Regarding the tumble we show, by means of the directional correlation, that the process is not stationary for tumble-times of the order of experimentally measured characteristic tumble-time. The mean square displacement is studied in detail for both movements even in the non-stationary regime. We determine the diffusion and ballistic coefficients for tumble- and run-times, establishing their properties and relationships.

Graphical abstract: Langevin equations for the run-and-tumble of swimming bacteria

Article information

Article type
Paper
Submitted
03 Feb 2018
Accepted
26 Apr 2018
First published
08 May 2018

Soft Matter, 2018,14, 3945-3954

Langevin equations for the run-and-tumble of swimming bacteria

G. Fier, D. Hansmann and R. C. Buceta, Soft Matter, 2018, 14, 3945 DOI: 10.1039/C8SM00252E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements