Jump to main content
Jump to site search

Issue 25, 2018
Previous Article Next Article

Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer

Author affiliations

Abstract

Optoacoustic imaging offers the promise of high spatial resolution and, at the same time, penetration depths well beyond the conventional optical imaging technologies, advantages that would be favorable for a variety of clinical applications. However, similar to optical fluorescence imaging, exogenous contrast agents, known as sonophores, need to be developed for molecularly targeted optoacoustic imaging. Despite numerous optoacoustic contrast agents that have been reported, there is a need for more rational design of sonophores. Here, using a library screening approach, we systematically identified and evaluated twelve commercially available near-infrared (690–900 nm) and highly absorbing dyes for multi-spectral optoacoustic tomography (MSOT). In order to achieve more accurate spectral deconvolution and precise data quantification, we sought five practical mathematical methods, namely direct classical least squares based on UV-Vis (UV/Vis-DCLS) or optoacoustic (OA-DCLS) spectra, non-negative LS (NN-LS), independent component analysis (ICA) and principal component analysis (PCA). We found that OA-DCLS is the most suitable method, allowing easy implementation and sufficient accuracy for routine analysis. Here, we demonstrate for the first time that our biocompatible nanoemulsions (NEs), in combination with near-infrared and highly absorbing dyes, enable non-invasive in vivo MSOT detection of tumors. Specifically, we found that NE-IRDye QC1 offers excellent optoacoustic performance and detection compared to related near-infrared NEs. We demonstrate that when loaded with low fluorescent or dark quencher dyes, NEs represent a flexible and new class of exogenous sonophores suitable for non-invasive pre-clinical optoacoustic imaging.

Graphical abstract: Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 Apr 2018, accepted on 14 May 2018 and first published on 18 May 2018


Article type: Edge Article
DOI: 10.1039/C8SC01706A
Citation: Chem. Sci., 2018,9, 5646-5657
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer

    S. Roberts, C. Andreou, C. Choi, P. Donabedian, M. Jayaraman, E. C. Pratt, J. Tang, C. Pérez-Medina, M. Jason de la Cruz, W. J. M. Mulder, J. Grimm, M. Kircher and T. Reiner, Chem. Sci., 2018, 9, 5646
    DOI: 10.1039/C8SC01706A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements