Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 21, 2018
Previous Article Next Article

CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides

Author affiliations

Abstract

Although aerobic oxidative acylation of amides with alcohols would be a good complement to classical synthetic methods for imides (e.g., acylation of amides with activated forms of carboxylic acids), to date, there have been no reports on oxidative acylation to produce imides. In this study, we successfully developed, for the first time, an efficient method for the synthesis of imides through aerobic oxidative acylation of amides with alcohols by employing a CuCl/TMEDA/nor-AZADO catalyst system (TMEDA = teramethylethylendiamine; nor-AZADO = 9-azanoradamantane N-oxyl). The proposed acylation proceeds through the following sequential reactions: aerobic oxidation of alcohols to aldehydes, nucleophilic addition of amides to the aldehydes to form hemiamidal intermediates, and aerobic oxidation of the hemiamidal intermediates to give the corresponding imides. This catalytic system utilizes O2 as the terminal oxidant and produces water as the sole by-product. An important point for realizing this efficient acylation system is the utilization of a TMEDA ligand, which, to the best of our knowledge, has not been employed in previously reported Cu/ligand/N-oxyl systems. Based on experimental evidence, we consider that plausible roles of TMEDA involve the promotion of both hemiamidal oxidation and regeneration of an active CuII–OH species from a CuI species. Here promotion of hemiamidal oxidation is particularly important. Employing the proposed system, various types of structurally diverse imides could be synthesized from various combinations of alcohols and amides, and gram-scale acylation was also successful. In addition, the proposed system was further applicable to the synthesis of α-ketocarbonyl compounds (i.e., α-ketoimides, α-ketoamides, and α-ketoesters) from 1,2-diols and nucleophiles (i.e., amides, amines, and alcohols).

Graphical abstract: CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides

Back to tab navigation

Supplementary files

Article information


Submitted
27 Mar 2018
Accepted
05 May 2018
First published
07 May 2018

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2018,9, 4756-4768
Article type
Edge Article

CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides

K. Kataoka, K. Wachi, X. Jin, K. Suzuki, Y. Sasano, Y. Iwabuchi, J. Hasegawa, N. Mizuno and K. Yamaguchi, Chem. Sci., 2018, 9, 4756
DOI: 10.1039/C8SC01410H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements