Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 69, 2018, Issue in Progress
Previous Article Next Article

Rationalization of hydrogen production by bulk g-C3N4: an in-depth correlation between physico-chemical parameters and solar light photocatalysis

Author affiliations

Abstract

The aim of this work is the systematic study of the photocatalytic activity of bulk graphitic carbon nitride (g-C3N4) in relation with the physical–chemical, structural and optical properties of the semiconductor. Fourteen g-C3N4 samples have been prepared by thermal condensation starting from three different precursor (melamine, dicyandiamide and urea) and exploring various temperatures (in the range 500–700 °C). The materials obtained have been deeply characterized by high resolution scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, nitrogen adsorption measurements (BET method), X-ray photoelectron spectroscopy and diffuse reflectance spectroscopy. Each semiconductor, coupled with Pt co-catalyst, was tested for hydrogen gas production from aqueous triethanolamine as model sacrificial agent, under simulated solar light. The hydrogen evolution profiles turned out to be strictly dependent on precursor type and synthesis temperature, with the highest evolution rate observed for the samples series produced from urea (up to ca. 4400 μmol g−1 h−1). The results, corroborated by the excellent inter-day precision of irradiation tests (RSD < 5%, n = 3) together with the good batch-to-batch reproducibility (RSD < 11%, n = 3), were critically discussed. Apart from the appealing production values obtained using the as-prepared materials, it was importantly pointed out that, besides crystallinity and visible light absorption, the photocatalytic behavior is definitely correlated to the surface area, which is dependent on the synthesis conditions, that is polymerization temperature and nature of g-C3N4 precursor. Overall, this systematic investigation demonstrated that, contrary to the polymerization degree (sp2/sp3 carbon ratio), surface area is the real determinant parameter for g-C3N4 hydrogen evolution activity.

Graphical abstract: Rationalization of hydrogen production by bulk g-C3N4: an in-depth correlation between physico-chemical parameters and solar light photocatalysis

Back to tab navigation

Supplementary files

Article information


Submitted
26 Oct 2018
Accepted
17 Nov 2018
First published
26 Nov 2018

This article is Open Access

RSC Adv., 2018,8, 39421-39431
Article type
Paper

Rationalization of hydrogen production by bulk g-C3N4: an in-depth correlation between physico-chemical parameters and solar light photocatalysis

A. Speltini, A. Pisanu, A. Profumo, C. Milanese, L. Sangaletti, G. Drera, M. Patrini, M. Pentimalli and L. Malavasi, RSC Adv., 2018, 8, 39421
DOI: 10.1039/C8RA08880B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements