Issue 50, 2018, Issue in Progress

Development of reprocessable novel sulfur-containing epoxy based on thermal treatment

Abstract

Inspired by the Diels–Alder reaction (DA reaction), the product of the reaction of 2-thiophenecarboxaldehyde (TCD) with epichlorohydrin (ECH) was combined with 1,4-anthraquinone to form a DA structure (a sulfur-containing self-healing epoxy resin (EP-DA) containing a large amount of π-electrons) was synthesized. The chemical structure, thermal properties, thermo-reversibility and tribological properties of EP-DA were studied by FTIR, DSC, gel–sol conversion and MRH-3G, respectively. The results indicated that the as-prepared epoxy composite network, which contains the thermally reversible D–A bond, enabled the epoxy resin to undergo self-repair. Moreover, the waste epoxy resin can be recycled and reused. The friction and wear of the epoxy during actual use were simulated. Macroscopic qualitative observation and quantitative measurement of shearing and peeling recovery were combined to examine the repair behavior and reprocessing ability of EP-DA, confirming that this material has good performance of self-repair and reprocessability, with the highest repair efficiency of up to 83.4%. Moreover, the introduced sulfur-containing diene body greatly improved the lubricating performance of the material, and the treatment time of waste reprocessing had a great influence on the content of the sulfur-containing epoxy monomer in the final EP-DA film. It was often possible to determine the degree of recovery of frictional properties. Inspired by the D–A reaction, a self-assembled large molecule that shares a large number of π-electrons is constructed.

Graphical abstract: Development of reprocessable novel sulfur-containing epoxy based on thermal treatment

Article information

Article type
Paper
Submitted
16 May 2018
Accepted
25 Jul 2018
First published
08 Aug 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 28386-28394

Development of reprocessable novel sulfur-containing epoxy based on thermal treatment

M. Li, N. Liu, J. Chen, K. Shi and Q. Li, RSC Adv., 2018, 8, 28386 DOI: 10.1039/C8RA04151B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements