Mixed metal CoII1−xZnIIx–organic frameworks based on chains with mixed carboxylate and azide bridges: magnetic coupling and slow relaxation†
Abstract
A series of isomorphous three-dimensional metal–organic frameworks [CoII1−xZnIIx(L)(N3)]·H2O (x = 0.26, 0.56 and 0.85) based on bimetallic CoII1−xZnIIx (x = 0.26, 0.56 and 0.85) chains with random metal sites have been synthesized and magnetically characterized. The CoII1−xZnIIx series, which intrinsically feature random anisotropic/diamagnetic sites, shows complex magnetic interactions. By gradually introducing the diamagnetic ZnII ions into the pure anisotropic CoII single-chain magnets system, the ferromagnetic interactions between CoII ions are gradually diluted. Moreover, the slow magnetic relaxation behaviour of the mixed metal CoII1−xZnIIx systems also changes. In this bimetallic series CoII1−xZnIIx, the Co-rich materials exhibit slow relaxation processes that may arise from SCM mechanism, while the ZnII-rich materials show significantly low slow magnetic relaxation. A general trend is that the activation energy and the blocking temperature decrease with the increase in diamagnetic ZnII content, emphasizing the importance of anisotropy for slow relaxation of magnetization.

Please wait while we load your content...