Jump to main content
Jump to site search

Issue 45, 2018
Previous Article Next Article

Formation of functional nanobiocatalysts with a novel and encouraging immobilization approach and their versatile bioanalytical applications

Author affiliations

Abstract

The discovery of functional organic–inorganic hybrid nanoflowers (FNFs) consisting of proteins/enzymes as the organic components and Cu(II) ion as the inorganic component has made an enormous impact on enzyme immobilization studies. The FNFs synthesized by an encouraging and novel approach not only showed high stabilities but also much enhanced catalytic activities as compared to free and conventionally immobilized enzymes. A recent development demonstrated that FNF formation has moved beyond the initial discovery in which enzymes and Cu2+ ions used as the organic and inorganic parts, respectively, are replaced with new organic (chitosan, amino acid and plant extracts) and inorganic (Cu2+ and Fe2+) materials. The new organic materials incorporated into FNFs act as Fenton-like agents and then show peroxidase-like activity owing to the metal ions and the porous structure of FNFs in the presence of hydrogen peroxide (H2O2). All FNFs have been widely utilized in many different scientific and industrial fields due to their greatly enhanced activities and stabilities. This review focuses primarily on the preparation, characterization, and bioanalytical applications of FNFs and explains the mechanisms of their formation and enhanced activities and stabilities.

Graphical abstract: Formation of functional nanobiocatalysts with a novel and encouraging immobilization approach and their versatile bioanalytical applications

Back to tab navigation

Article information


Submitted
16 Apr 2018
Accepted
03 Jul 2018
First published
16 Jul 2018

This article is Open Access

RSC Adv., 2018,8, 25298-25303
Article type
Review Article

Formation of functional nanobiocatalysts with a novel and encouraging immobilization approach and their versatile bioanalytical applications

C. Celik, D. Tasdemir, A. Demirbas, A. Katı, O. T. Gul, B. Cimen and I. Ocsoy, RSC Adv., 2018, 8, 25298
DOI: 10.1039/C8RA03250E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements