Issue 40, 2018, Issue in Progress

Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: a heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano[3,2-c]chromen-5(4H)-ones

Abstract

A novel, efficient and one-pot multi-component procedure for the synthesis of simple pyrano[3,2-c]chromen-5(4H)-ones or pyrazolyl pyrano[3,2-c]chromen-5(4H)-ones via reaction of aryl aldehydes, acetophenones and 4-hydroxycoumarin promoted by amino glucose-functionalized silica-coated NiFe2O4 nanoparticles under solvent-free conditions without using any other harmful organic reagents was reported. The structure of this nanoparticle was characterized by transmission electron microscopies, X-ray diffraction and Fourier transform infrared spectroscopies. The catalyst could easily be separated from the reaction mixture by using an external magnetic field and it was reusable. The high purity of the desired products, eco-friendliness, short reaction time and easy workup procedure can be mentioned as the other advantages of this method.

Graphical abstract: Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: a heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano[3,2-c]chromen-5(4H)-ones

Article information

Article type
Paper
Submitted
26 Mar 2018
Accepted
20 May 2018
First published
19 Jun 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 22313-22320

Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: a heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano[3,2-c]chromen-5(4H)-ones

L. Z. Fekri, M. Nikpassand, S. Pourmirzajani and B. Aghazadeh, RSC Adv., 2018, 8, 22313 DOI: 10.1039/C8RA02572J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements