Issue 41, 2018, Issue in Progress

Bio-inspired semi-transparent silver nanowire conductor based on a vein network with excellent electromechanical and photothermal properties

Abstract

A bio-inspired conductive binary-network of vein–silver nanowires (AgNWs) was embedded in poly(dimethylsiloxane) (PDMS) to prepare a semi-transparent stretchable conductor (vein–AgNWs–PDMS) by a simple dipping process. The special conductive structure was constructed by using veins with a porous structure as an ideal skeleton to load AgNW networks, which allowed the vein–AgNWs–PDMS composite to show a low sheet resistance of 1 Ω sq−1 with 74% transmittance. The figure of merit of vein–AgNWs–PDMS is as high as 2502 and can be adjusted easily by controlling the times of the dipping cycle. Furthermore, the vein–AgNWs–PDMS conductor can retain high conductivity after 150% mechanical elongation and exhibit excellent electromechanical stability in repeated stretch/release tests with 60% strain (500 cycles). As an example of an application, patterned light-emitting diode (LED) arrays using the vein–AgNWs–PDMS conductors have been fabricated, and worked well under deformation. Moreover, the photo-thermal properties of the vein–AgNWs–PDMS composite have been demonstrated by a position heating experiment using near-infrared (NIR) laser irradiation and the generated heat can be effectively dissipated through the vein network to avoid local overheating. Due to the high-performance and facile fabrication process, the vein–AgNWs–PDMS conductors will have multifunctional applications in stretchable electronic devices.

Graphical abstract: Bio-inspired semi-transparent silver nanowire conductor based on a vein network with excellent electromechanical and photothermal properties

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2018
Accepted
09 Jun 2018
First published
26 Jun 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 23066-23076

Bio-inspired semi-transparent silver nanowire conductor based on a vein network with excellent electromechanical and photothermal properties

Y. Qiang, C. Zhu, Y. Wu, S. Cui and Y. Liu, RSC Adv., 2018, 8, 23066 DOI: 10.1039/C8RA02064G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements