Issue 29, 2018, Issue in Progress

Morphology and mechanical behavior of diamond films fabricated by IH-MPCVD

Abstract

Morphology of diamond films has been controlled via intermediate frequency induction heated microwave plasma chemical vapor deposition (IH-MPCVD), which was transformed with various substrate temperatures (Tsub = 923–1123 K) and CH4/H2 ratios (ηc = 0.5–2 vol%). The coupling effects of Tsub and ηc on the structure of diamond films have been studied. At ηc = 0.5 vol%, the sp3/sp2 ratio of diamond films reached 98% at 1073 K, surface roughness (Rms) increased from 50 to 85 nm with increasing Tsub, the maximum hardness (Ha) reached 84 GPa at 973 K, and the maximum Young's modulus (E) reached 642 GPa at 1023 K. The residual stress (σ) was calculated as a function of Tsub and ηc. The quality factor (Q), combining microstructure and mechanical behavior, has been creatively defined to evaluate the quality of diamond films.

Graphical abstract: Morphology and mechanical behavior of diamond films fabricated by IH-MPCVD

Article information

Article type
Paper
Submitted
03 Mar 2018
Accepted
24 Apr 2018
First published
30 Apr 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 16061-16068

Morphology and mechanical behavior of diamond films fabricated by IH-MPCVD

R. Tu, T. Xu, D. Li, S. Zhang, M. Yang, Q. Li, L. Zhang, T. Shimada, T. Goto and J. Shi, RSC Adv., 2018, 8, 16061 DOI: 10.1039/C8RA01871E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements