Issue 31, 2018

Toward simultaneous toughening and reinforcing of trifunctional epoxies by low loading flexible reactive triblock copolymers

Abstract

Flexible reactive poly(glycidyl methacrylate)-b-poly(propylene glycol)-b-poly(glycidyl methacrylate) (GPG) and nonreactive poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (EPE80) were utilized to toughen a trifunctional epoxy (diglycidyl 4, 5-epoxycyclohexane-1, 2-dicarboxylate, TDE-85). In comparison with the nonreactive EPE80 and reactive GPG92 with long reactive blocks (Lreactive), the incorporation of reactive GPG83 with short Lreactive improved the comprehensive mechanical properties of the epoxy. Upon an optimal GPG83 loading of 2.5 wt%, the tensile strength, elongation at break and critical strain energy release rate (G1c) increased by ca. 31%, 45.9% and 130.8%, respectively, without sacrificing the modulus and thermal stability. Morphology characterization evidenced that micro-scale domains and nanosized vesical micelles coexisted in the nonreactive EPE80 toughened systems. However, homogeneous morphologies were formed in reactive GPG83 and GPG92 toughened systems. Fracture morphology analysis suggested that GPG can toughen epoxy thermosets by incorporating flexible PPG blocks into the epoxy network, thereby enabling an energy dissipation mechanism. The good balance between the mobility of flexible PPG and degree of cross-link density leads to the simultaneous toughening and reinforcing effect of GPG83 toward the trifunctional epoxy.

Graphical abstract: Toward simultaneous toughening and reinforcing of trifunctional epoxies by low loading flexible reactive triblock copolymers

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2018
Accepted
05 May 2018
First published
14 May 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 17380-17388

Toward simultaneous toughening and reinforcing of trifunctional epoxies by low loading flexible reactive triblock copolymers

B. Tang, M. Kong, Q. Yang, Y. Huang and G. Li, RSC Adv., 2018, 8, 17380 DOI: 10.1039/C8RA01017J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements