Jump to main content
Jump to site search

Issue 9, 2018
Previous Article Next Article

Bending energy of 2D materials: graphene, MoS2 and imogolite

Author affiliations

Abstract

The bending process of 2D materials, subject to an external force, is investigated, and applied to graphene, molybdenum disulphide (MoS2), and imogolite. For graphene we obtained 3.43 eV Å2 per atom for the bending modulus, which is in good agreement with the literature. We found that MoS2 is ∼11 times harder to bend than graphene, and has a bandgap variation of ∼1 eV as a function of curvature. Finally, we also used this strategy to study aluminosilicate nanotubes (imogolite) which, in contrast to graphene and MoS2, present an energy minimum for a finite curvature radius. Roof tile shaped imogolite precursors turn out to be stable, and thus are expected to be created during imogolite synthesis, as predicted to occur by self-assembly theory.

Graphical abstract: Bending energy of 2D materials: graphene, MoS2 and imogolite

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Oct 2017, accepted on 15 Jan 2018 and first published on 25 Jan 2018


Article type: Paper
DOI: 10.1039/C7RA10983K
RSC Adv., 2018,8, 4577-4583
  • Open access: Creative Commons BY license
  •   Request permissions

    Bending energy of 2D materials: graphene, MoS2 and imogolite

    R. I. González, F. J. Valencia, J. Rogan, J. A. Valdivia, J. Sofo, M. Kiwi and F. Munoz, RSC Adv., 2018, 8, 4577
    DOI: 10.1039/C7RA10983K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements