Issue 5, 2018, Issue in Progress

Remediation of trichloroethene (TCE)-contaminated groundwater by persulfate oxidation: a field-scale study

Abstract

This study uses a trichloroethene (TCE)-contaminated site to determine the efficacy of persulfate oxidation for the treatment of TCE-contaminated groundwater. The main objectives of this study are: (1) to evaluate the efficacy of TCE treatment using persulfate with different injection strategies; (2) to determine the persistence of persulfate in the aquifer; (3) to determine the radius of influence (ROI) and transport distance of persulfate and (4) to determine the impact of persulfate on indigenous microorganisms during remediation. TCE concentrations are 0.26 mg L−1 in P143 and 0.361 mg L−1 in P146 and the microbial numbers are 6.1 × 103 CFU mL−1 in P143 and 4.4 × 104 CFU mL−1 in P146, before persulfate is injected. The results of the pilot study show that persulfate eliminates TCE. 100% of TCE is removed in P146 and 95% in P143. Single injection of a total amount of 275 kg of 5% persulfate produces better TCE removal than two half persulfate injections in sequence. The transport distance of persulfate ranges from 3.6 to 4.5 m. Persulfate also persists for 14 days in the aquifer. After persulfate is injected, the total bacterial counts decrease slightly to 2.4 × 103 CFU mL−1 in P143 and 1.8 × 103 CFU mL−1 in P146. When persulfate is consumed, the total bacterial counts increase but there is no recovery of the microbial community. The results show that sequential injections of a large amount of persulfate are suggested to maintain good long-term performance for TCE treatment.

Graphical abstract: Remediation of trichloroethene (TCE)-contaminated groundwater by persulfate oxidation: a field-scale study

Article information

Article type
Paper
Submitted
01 Oct 2017
Accepted
02 Jan 2018
First published
10 Jan 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 2433-2440

Remediation of trichloroethene (TCE)-contaminated groundwater by persulfate oxidation: a field-scale study

Y. Chang, T. Chen, Y. Tsai and K. Chen, RSC Adv., 2018, 8, 2433 DOI: 10.1039/C7RA10860E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements