Efficient oxygen evolution electrocatalyzed by a Cu nanoparticle-embedded N-doped carbon nanowire array†
Abstract
Development of efficient and durable catalysts based on earth-abundant elements for oxygen evolution reactions (OER) is important for renewable energy storage and conversion technologies. Herein, we report the development of a Cu nanoparticle-embedded N-doped carbon nanowire array on copper foam (Cu–N–C NA/CF) via carbonization of a Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) nanoarray. As a 3D OER electrode, this Cu–N–C NA/CF shows high catalytic activity, needing an overpotential of 314 mV to drive a geometrical current density of 20 mA cm−2 in 1.0 M KOH. It also shows strong long-term electrochemical durability. This suggested that CuO nanoparticles as active species were in situ electrochemically converted from Cu nanoparticles and stably dispersed in the carbon matrix during electrocatalysis.

Please wait while we load your content...