Jump to main content
Jump to site search

Issue 9, 2018
Previous Article Next Article

Novel sol–gel fabrication of Yb3+/Tm3+ co-doped β-NaYF4 thin films and investigation of their upconversion properties

Author affiliations

Abstract

An innovative sol–gel process, using a mixture of Na(hfa)·tetraglyme and RE(hfa)3·diglyme (RE = Y, Yb, Tm) complexes, has been optimized to produce upconverting β-NaYF4:Yb3+/Tm3+ thin films. The X-ray diffraction (XRD) analysis confirms that the new sol–gel preparation route yields reproducibly and selectively the hexagonal Na(Y1.5Na0.5)F6 structure (β-NaYF4) without any impurity phases, since no peaks of the cubic NaYF4, YOF, Y2O3 or NaF phases were observed. This final goal has been achieved through an accurate optimization of the operative parameters such as the molar ratio of the precursor mixture, the aging time of the sol, the spin coating procedure and the annealing temperature. Field-emission scanning electron microscopy (FE-SEM) images indicate that the morphology of the surfaces, grain dimensions and thickness are strongly related to the processing parameters, with the hexagonal phase films having a very uniform morphology. Energy dispersive X-ray (EDX) analyses established the film composition in terms of dopant ions, which are responsible for the upconverting properties of the material. Luminescence measurements under laser excitation at 980 nm confirmed the promising upconversion properties of the β-NaYF4:Yb3+/Tm3+ films.

Graphical abstract: Novel sol–gel fabrication of Yb3+/Tm3+ co-doped β-NaYF4 thin films and investigation of their upconversion properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Jul 2018, accepted on 26 Jul 2018 and first published on 30 Jul 2018


Article type: Paper
DOI: 10.1039/C8PP00295A
Citation: Photochem. Photobiol. Sci., 2018,17, 1239-1246
  •   Request permissions

    Novel sol–gel fabrication of Yb3+/Tm3+ co-doped β-NaYF4 thin films and investigation of their upconversion properties

    A. L. Pellegrino, M. R. Catalano, P. Cortelletti, G. Lucchini, A. Speghini and G. Malandrino, Photochem. Photobiol. Sci., 2018, 17, 1239
    DOI: 10.1039/C8PP00295A

Search articles by author

Spotlight

Advertisements